19951018 060

AFOSR-TR-95

REPORT DOCUMENTATION PAGE

s r
public reporting burden for this collection of information s estimated to average 1 hour per response, including the !
and completing and reviewing the collection of information. Send com J

gathering and maintaining the data needed, n
Collection of information, including suggestions for reducing this burden. 1o Washington Headaquarters Services, Dirt

Davis Highway, Suite 1204, Artington, VA 22202-4302. and 10 the Office of Management and Budget, Paperwork Rec

. ONLY (L blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
T AGENCY USE ONLY (Leave Blar FINAL/15 APR 93 T0 14 APR 95

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

AN INTERACTIVE, INTELLIGENT TUTORING SYSTEMS FOR
PREDICTION TASKS

6. AUTHOR(S)
' 2304/GS
F49620-93-1-0239

BURCE PORTER
8. PERFORMING ORGANIZATION

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
REPORT NUMBER

UNIVERSITY OF TEXAS
DEPARTMENT OF COMPUTER SCIENCES

AUSTIN, TEXAS 78712

10. SPONSORING / MONITORING

3. SPONSORING / MONITORING AGENCY NAME({uNEFAD)
AFOSR /NM \
110 DUNCAN AVE, SUTE B115
BOLLING AFB DC 20332-0001

AGENCY REPORT NUMBER
F49620-93-1-0239

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

13. ABSTRACT (Maximum 200 words)

A major limitation of current advisory systems (e.g., intelligent tutoring systems
and expert system) is their restricted ability to give explanations. The goal of
our research is to develop and evaluate a flexible explanation facility, on that

can dynamically generate responses to questions not anticipated by the system’s
designers and that can tailor these responses to individual users. To achieve this
flexibility, we are developing a large knowledge base, viewpoint construction

facility, and a modeling facility.

In the long term we plan to build and evaluate advisory systems with flexible
explanation facilities for scientists in numerous domains. In the short term, we
are focusing on a single complex domain in biological science, and we are working
toward two important milestones: 1) building and evaluating and advisory system
with a flexible explanation facility for freshman-level students studying biology,
and 2) developing general methods and tools for building similar explanation

facilities in other domains.
14. SUBJECT TERMS

15. NUMBER OF PAGES

DTIG QUALITY INSPRCTED 8 16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION |19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT

uneE &8 1eD OONELASSTr 1ED NECRTF 16D SAR(SAME AS REPORT)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std Z39-'8

2498-102




> - SEP-13-95 WED 08:43 UT COMPUTER SCIENCES FAX NO. 512 471 8885 P. 01

COLLEGE OF NATURAL SCIENCES

45

THE UNIVERSITY OF TEXAS AT AUSTIN Q\\R Of\\'\f)

Deparsmens of Computer Sciences * Taylor Hall 2. 124 - Austin, Texas 78712-1188-(512)471-7316

Septemnber 13, 1995

Marilyn McKee
Contracts Officer
Air Force Office of Scientific Rescarch

Dear Ms. McKee,
The final report from my funded research (contract F49620-93-1-0239)
is attached. I apologize for the delay.

Sincerely,

Ao Rten

Bruce Porter,
Associate Professor




-~ SEP-13-85 WED 08:43 UT COMPUTER SCIENCES FAX NO. 512 471 8885 P.02

An Interactive, Intelligent Tutoring System for
Prediction Tasks: Final Technical Report'

\ Accesion For

NTIS CRA&I
Bruce Porter DTIC TAB 0
Unannounced ]
Justification
Department of Computer Sciences By

.- - . . istribution
University of Texas at Austin Dis

Austin, Texas 78712 Availability Codes
’ L

Avail and/[or
Dist Special

Abstract /4_ { \

A major limitation of current advisory systems (e.g., intelligent tntoring systems
and cxpert systems) is their restricted ability to give explanations. The goal of our
research is to develop and evaluate a flezible explanation facility, one that can dynam-
ically generate responses Lo questions not anticipated by the system’s designers and
that can tailor these responses to individual users. To achieve this flexibilily, we are
developing a large knowledge basc, 2 viewpoint construction facility, and a modeling
facility. ‘

In the long term we plan to build and evaluate advisory systems with flexible
explanation facilities for scientists in numerous damains. In the short term, we are
focusing on a single complex domain in biological science, and we are working toward
two important milestones: 1) building and evaluating an advisory system with a flexible
explanation facility for freshman-level students studying biology, and 2) developing
general methods and Lools for building similar explanation facilities in other domains.

LSyupport for this research was provided by the Air Force Office of Scientific Research (contract number
F49620-93-1-0239).
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1 Research Objectives

The goal of our research is to develop and evaluate a flezible explanation facility that can
dynamically generale responses to questions not anticipated by the system’s designers and
that can tailor these responses to individual users. Previous advisory systems have lacked
these capabilities for a variety of reasons. In this section we will describe the problems of
current advisory systems, the solutions to these problems that we propose, and our research
activities for achieving those solutions.

Problems. The explanation facilities of current advisory systems are inflexible for two

I€asons:

¢ Tnadequate domnain knowledge: At least two factors limit the adequacy of the knowl-
edge base as a source of “raw materials” for flexibly generating explanations: small
size and task specificity. Although small size is an obvious limitation, few research
projects have built a large-scale kuowledge base as their “starting point” for research
on explanation. Furthermore, because the knowledge for most advisory systems sup-
ports only a single task, most research on explanation has overlooked issues outside
the task requirements, such as answering a range of questions, explaining terminology,
and customizing explanations for specific users [12]. (For notable exceptions see work
by Moore and Swartout [23, 13].)

e Inability to reorganize knowledge: Little work has been done to develop methods to
select coherent packets of knowledge from a knowledge base, and even less on the reor-
ganization of portions of the knowledge base to improve specific explanations. These
issues have been avoided by “hardwiring” knowledge structures thai. are suitable for the
limited explanations required by a particular advisory system. (For notable exceptions
see work by McKeown [11] and Suthers [22].)

Solutions. We have developed a five-part solution to the problems of current advisory
systems. Our solution comprises: (1) constructing a knowledge base which is large-scale
and contains very fine-grained representations, (2) selecting and organizing knowledge with
viewpoints and models, (3) generating new viewpoints on demand; (4) generating explana-
tions which relate new information to what the user already knows, and (5) constructing
and simulating models and using them to explain the behavior of mechanisms. We briefly
describe each of these in turn, but we focus on the last one.
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First, we have built an extensive knowledge base for one area of biology — college-level
anatomy and physiology of plants [16]. Although it is uuder constant development, it is
already one of the largest knowledge bases in existence. (Our knowledge base currently
contains about 3,000 frames and over 28,000 facts.) Unlike knowledge bases built with
instructional frames [8] or hypertext [2], our knowledge base consists of “atomic facts™ that
our explanation facility can combine in different ways to produce different explanations.

Second, we have developed methods for selecting information from the knowledge base
and organizing it into a coherent bundle appropriate to the situation at hand. One organizing
structure is that of viewpoints, which provide coherent descriptions of objects or processes.
For instance, the viewpoint “photosynthesis as a production process” selects and organizes
facts to explain how photosynthesis produces glucose from carbon dioxide and water. An-
other organizing structure is that of models, which are built from viewpoints and support
computer simulation. For example, an energy flow model of the plant includes the viewpoints
“shotosynthesis as an energy transduction process” and “respiration as an energy transfer
process,” and it allows an advisory system to predict and explain the effects of changes in
light wavelength on a plant’s photosynthetic or respiratory rate under a variety of specific
circumstances. '

Third, we have developed methods to automatically generate new viewpoints. This
ability is important because, as system designers, we cannot anticipate all the viewpoints
necessary for effective explanations. For example, Table 1 lists several viewpoints on photo-
synthesis and the situations in which they might arise. Our question answering facility is able
to construct thesc viewpoints by selecling and reorganizing the individual facts comprising
existing viewpoints in the knowledge base (see [1]).

Forth, we have developed methods to automatically generate intcgrative ezplanations,
which explicitly relate new information Lo what the user already knows. This is important
to advisory systems because the coherence of an explanation depends upon the particular
situation. Our system records the discourse with each user and explains new topics in ways
that relate to that user’s knowledge and interests (see [10]).

Finally, we have developed methods for automatically constructing and simulating mod-
els and interpreting the consequences of simulations. These methods use existing methods of
qualitative reasoning, but add two new capabilities: constructing models from large knowl-
edge bases and generating explanations from these models. This allows our explanation
facility to answer “what-if” questions that were unanticipated when the knowledge base was
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[r Viewpoint on Photosynthesis l Conteztual Sttuation J
as a destructive process 'l'o explain the effects of the first oxygen
producing plants on other organisms during
evolution.
as an essential process in ecosys- | To explain how almost all living things de-
tem energy flow pend on photosynthesis for deriving energy

from an abiotic source.

as a magnesium-utilizing process | To explain the cffects of magnesium defi
ciency on the plant.

as an epabling process To explain how photosynthesis is impor-
tant for any processes which usc glucose or
oxygen.

as a constructive process “ To explain how photosynthests is vitally im-

portani to plant growth and reproduction.

Table 1: A few of the viewpoints on photosynthesis and the teaching situations in which
they might be appropriate.

built (see [18]). Developing this capability has been our primary focus during the two years
of AFOSR funding, and it is the foeus of the remainder of this report.

2 Automated Modeling of Complex Systems to An-
swer Prediction Questions

The ability to answer prediction questions is crucial in reasoning about physical systems.
The following question, from the plant physiology domrain, illustrates the general form of
a prediction question: “How would decreasing soil moisture affect a plant’s transpiration?
rate?” A prediction question poses a hypothetical scenario (e.g., 2 plant whose soil moisture
is decreasing) and asks for the resulting behavior of specified variables of interest (c.g., the
plant’s transpiration rate). Aun answer to a prediction question includes the desired predic-
tions and, perhaps more importantly, an explanation of the assumptions and principles that

2Transpiration is the process by which water evaporates from the leaves,
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justify the predictions. In biology and ecology, such questions are important for predicting
the consequences of natural conditions and management policies as well as for teaching bio-
logical and ecological principles. Because prediction is time consuming and error prone, and
requires people with special knowledge, automation would be valuable.

A tool for answering prediction questions would be particularly uscful for predicting the
effects of global climate changes on plants and animals in specific regions. Answering these
questions requires considerable knowledge: general principles of plant and animnal physiology
and species interactions as well as specific data on individual species, climatic events, and
geologic formations. The central issue in answering prediction questions is constructing,
from this wealth of information, a model that captures the important aspects of the scenario
and their relationships to the variables of interest.

This section describes TRIPEL, a modeling program for answering prediction questions.
Section 3 defines the modeling task. Section 4 presents TRIPEL’s criteria for distinguishing
relevant aspects of the scenario from irrelevant aspects. Section § describes the algorithm
that uses these criteria to construct the simplest adequate model for answering a question.

While TRIPEL is designed to support a wide variety of domains, it has been extensively
tested in the domain of plant physiology. Specifically, TriPEL has been used to answer
questions from the Botany Knowledge Base [17]. The BKB is a large (over 200,000 facts),
multipucpose knowledge base covering plant anatomy, physiology, and development. It was
developed by a domain expert. Section 6 discusses the results of evaluating TRIPEL using
the RKB. ‘

Because the BKB covers many different physical phenomena at many levels of detail,
constructing simple yet adequate models from it is a difficult task. The techniques that allow
TRIPEL to perform this task efficicntly arc applicable throughout science and engineering,
but they are especially useful for biology and ecology.

3 The Modeling Task

TRIPEL’s inputs are a prediction question and domain knowledge. The question has two
parts: the scenario and the variables of interest. The scenario includes physical objects, spa-
tial relations among them, and driving conditions. Driving conditions specify the behavior of
selected variables (e.g., soil moisture is decreasing), their initial value (e.g., the temperature
is above the freezing point), or both.
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TRIPEL uses the compositional modeling approach [3], in which the modeler’s job is to
select those elements of domain knowledge that are needed to answer the question. Qur re-
search focuses on building differential equation models, so the elements of domain knowledge
are the influences that pertain to the scenario.

An influence is a causal relation between two variables, as in Qualitative Process Theory
[5]. The variables are real-valued, time-varying properties of the scenario (e.g., soil moisture
or the plant’s trapspiration rate). LFach influence specifies that a variable, or its rate of
change, is a function of auother variable.

“ Conceptually, each influence represents a physical phenomenon in the scenario at some
level of detail. Typically, an influence represents the effect of a process (e.g., the amount of
water in the plant is negatively influenced by the rate of transpiration) or a factor that affects
a process’s rate (c.g., the rate at which the plant absorbs water from the soil is positively
influcnced by the level of soil moisture). To emphasize their role in modeling, we call the set
of all influences that pertain to the scenario the cendidate influences.

TRIPEL’s output, the scenario model, is the subset of candidate influences that are rele-
vant to the question. Another program, the Qualitative Process Compiler [4], built on QSIM
(9], simulates the scenario model starting from the initial statc of the scenario. This simu-
lation generates the predictions that are needed to answer the question. A colleague at the
University of Texas is developing a program that will use the model and simulation results
to answer the question and explain the answer.

4 Modeling Criteria

When the domain knowledge is extensive, as with plant physiology, it will describe many
phenomena in the scenario, some at multiplelevels of detail. Thus, there arc two fundamental
issues in modeling. First, the modeler must dccide which phenomena are relevant to the
question and which can be ignored. Second, for each relevant phenomenon, the modeler
must choose a relevant level of detail. A candidate influence is relevant if it represents a

relevant level of detail for a relevant phenomenon.
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4.1 Scope

Of the many phenomena in any scenario, only a few are necded to answer any particular
question. For example, of the many processes at work in 2 plant, the question about de-
creasing soil moisture only requires a model of the plant’s water regulation processes. The
scope of a model is the sef of phenomena it covers.

There are.two types of irrelevant phenomena. The first type, insignificant phenomena,
can be ignored because they do not significantly influence the variables of interest. Tor
instance, in our example, growth processes can be ignored because they do not significantly
influence the transpiration rate.

The second type of irrelevant phenomena are those that can be ticatcd as ezogenous. For
instance, in our example, the processes that regulate soil moisture (e.g., rain and eveporation
from the soil) can be treated as exogenous. Although exogenous phenomena do significantly
influence the variables of interest, they are nonetheless irrelevant to the question; they do not
help predict the effects of the driving conditions (in our example, decreasing svil moisture)
on the variables of interest.

To choose a suitable scope for the model, the modeler must eliminate both types of
irrelevant phenomena. To eliminate insignificant phenomena, the modeler needs criteria
for recognizing insignificant influences. By pruning insignificant jnfluences, the modeler
disconnects the model from all the insignificant phenomena in the scenario.

TRIPEL determines whether an influence is significant using time scale information. Pro-
cesses cause significant change on widely disparate time scales. For example, in a plant,
watcr flows through membranes on a time scale of seconds, solutes flow through membranes
ou a time scale of minutes, and growth requires hours or days. In TRIPEL, each influence
that represents an effect of a process may have associated knowledge specifying the fastest
timne scale on which the effect is significant. Before constructing the scenario model, TRIPEL
automatically determines a suitable time scale of interest for the question [20]. The time
scale of interest allows TRIPEL to conclude that any candidate influence operating on a slower
time scale is insignificant. This significance critcrion is used by human modelers in many
domains, including biology, ecology, and many branches of engineering (6, 15, 21].

To eliminate exogenous phenomena, the modeler needs criteria for choosing the exogenous
variables of the model. Exogenous variables are those variables in the model whose behavior
is determined by influences that are outside the scopc of the model. All other variables in
the model are dependent; their behavior is determined by influences in the model. ‘Thus,
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the exogenous variables comstitute the boundary of the model, separating the model {from
exogenous phenoruena in the scenario. For instancc, in our example, by treating soil moisture
as an exogenous variable, the processes that regulate soil moisture are excluded from the
model.

'o deterrnine whether a variable in the model can be treated as exogenous, TRIPEL uscs
two criteria. First, by definition, the variable must not be significantly influcnced, in the
scenario, by any other variable in the model. One variable significantly influences another
if there is a chain of candidate influences leading from the first variable to the second and
every influence in the chain is significant. Second, note that thc objective in a prediction
question is to predict the effects of the driving variables on the variables of intercst. A driving
variable is one whose behavior or initial state is specified in the question (in our example, soil
moisture). To meet that objective, the modeler must ensure that the exogenous variables
do not separate the modc] from the driving variables of the question. Therefore, a variable
'n a model can be treated as exogenous only if it is not significantly influenced, in the
scenario, by any driving variable of the question. TRIPEL tests these two criteria using a
graph connectivity algorithm on the candidate influences [20]. :

In swmnmary, TRIPEL eliminates irrelevant phenomena {rom the scope of the model by
pruning insignificant influences (using time scale information) and by choosing suitable ex-
ogenous variables for the model. Phenomena that do not significantly influence the variables
of interest. or that influence the variables of interest only through exogenous variables, are
not included in the model (at any level of detail).

4.2 Level of Detail

The domain knowledge may provide multiple levels of detail for many phenomena in the
scenario. For example, water in the plant can be treated as an aggregate, or the water
in the roots, stem and leaves can be modeled individually. Similarly, processcs can be
aggregated. For example, the chemical formula for photosynthesis summarizes the net effects
of its component reactions. Also, the dynamics of a process cau often be summarized by
its equilibrium results. For example, when the level of solutes in a plant ccll changes, the
process of osmosis adjusts the cell’s water to 2 new equilibrium Jevel. If the dynamics of this
process are irrelevant, the modeler can simply treat the level of water as an instantancous
function of the level of solutes. Each of these types of alternatives arises in many arcas of

science and engineering.
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For each relevant phenomenon in the scenario, the modeler must choose 2 suitable level
of detail. Irrclevant details complicate simulation and make the resulting explanation less
comprehensible, so the modeler must choose the simplest level of detail that is adequate for
answering the question.

TRIPEL has several criteria for choosing the level of detail. First, some approximations
may be invalid in the context of the question. For exarnple, process dynamics can only
be summarized by their equilibrium result if the process reaches equilibrium very quickly
relative to the time scale of interest. TRIPEL includes a variety of general principles for
recognizing that a level of detail is invalid or inadequate for a question.

Second, TRIPEL includes coherence criteria. These ensure that the level of detail chosen
for different phenomena in the model are compatible. The coherence criteria also ensure
that the model does not include different. levels of detail for any single phenomenon.

Finally, for those alternatives that are adequate for the question and coherent with other
parts of the model, TRIPEL chooses the one that leads to the simplest adequate model. While
any simplicity criteria could be used, TRIPEL defines one model as simpler than another if it
has fewer variables. The number of variables in a modcl is 2 good heuristic measure of the
complexity of simulation and of the model’s comprehensibility. :

In summary, the domain knowledge often provides alternative levels of detail for relevant
phenomena, and the modeler must determine which level is relevant. In TRIPEL, a level of
detail is relevant if it is adequate for answering the question, coherent with other elemcnts
of the mode), and it lcads to the simplest adequate model.

5 Modeling Algorithm

Fach candidate influence represents some phenomenon at some level of detail, so TRIPEL’s
criteria for choosing scope and level of detail allow jt to detcrmine the influences that should
be included in the scenario model. This section explains TRIPEL’s algorithm for selecting
the relevant influences.

‘FRIPEL conducts a best-first scarch for the simplest adequatc scenario model for the
question. Each statc in the search space is a partial model, a model whose scope may not
include all relevant phenomena. A partial model may contain free variables (variables not
vet chosen as exogenous or dependent). The initial state in the search is a partial model
consisting only of the variables of interest, all free. The successor function, described below,
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extends the scope of a partial model to include any additional phenornena relevant to the
free variables, possibly adding new free variables. A partial model has mulliple successors
when there are alternative levels of detail for the new phenomena. A partial model is
pruned from the search if it is incoherent (i.e., violates the coherence criteria) or invalid (i.e.,
includes an invalid level of detail); any extension of an incoherent/invalid partial model is
also incoherent/invalid. The search ends when an adequate model is found that is at least as
simple as 2!l remaining partial models; these partial models can only grow. The simplicity
criterion (i.e., number of variables in the model) also serves as the evaluation function for
the best-first search.

The successor function, extend-model, extends the scope of a partial model. Extend-
model first determines whether all the [ree variables in the partial model can be exogenous,
as described in Section 4.1. If so, it marks each one as exogenous and returns the resulting
model, which is now cornplete. Otherwise, it chooses a free variable that must be dependent,
and it determines all combinations of candidate influences on that variable that include every
significant influencing phenomenon at some level of detail (multiple combinations arise from
alternative levels of detail for these phenomena). Extend-model returns a set of new partial
modcls, cach the result of extending the original partial model with one of the combinations.

To extend the original partial model with a combination of candidate influences, extend-
model adds the influences to the model, marks the chosen frce variable as dependent, and adds
any new free variables to the model. The new free variables are those variables referenced
by the new influences but not already in the model (e.g., an influencing variable).

This algorithu is guaranteed to return the simplest adequate scenario model whenever
an adcquate scenario model exists. To see this, note that each partial model represents all
its extensions. Thus, the initial partial model in the search represents all scenario models
that include the variables of interest. Conceptually, the guarantee results from the following

slralegy:

e From the space of all possible scenario models, the algorithm repeatedly prunes away
models until only a single scenario mode! (if any) remains.

o It never prunes a scenario mode] unless either (1) the model is inadequate for the
question or (2) if the model is adequate, therc is an adequate scenario model still
under consideration (i.e., that is an cxtension of a partial model on the search agenda)
that is at least as simple.

10
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For the details of the proof, see [19].

6 Evaluation

To evaluate TRIPEL, we tested it on a variety of prediction questions concerning the phys-
iology of a prototypical plant. The questions were generated by a domain expert. Each
question specifies the qualitative behavior of one variable {e.g., soil moisture is decreasing)
and asks for the resulting behavior of another (e.g., transpiration rate).

The domain knowledge was provided by the Botany Knowledge Base (BKB) [17]. The
BKB is a large (over 200,000 facts), multipurpose knowledge base covering plant anatomy,
physiology, and development. It was developed by a domain expert. The BKB provides 691
variables representing properties of a plant and its environment (soil and atmosphere), and
it provides 1507 candidate influences among them. The candidate influences cover many
different types of processcs, including water regulation, metabolism, temperature regulation,
and transportation of gasses and solutes. These processes operate on many different time
scalcs. Many phenomena covered by the BKB are represented at multiple levels of detail, as
described in Section 4.2.

The evaluation, described in detail in [19], suggests that TRIPEL is already an effective
modeling program. Despite the sizc of the BKB, TRIPEL typically generates simple, adequate
models. as judsed by a domain expert. Models ranged in size from 3 variables to 93 variables,
and more than half had fewer than 20 variables. Furthermore, the knowledge TRIPEL requires
to construct these models is fundamental plant physiology knowledge that is natural for a

domain expert to encode.
The evaluation also identified the most important limitation of TRIPEL: its criterion for

determining whether one variable significantly influences another should be more sophisti-
cated. Currently, TRIPEL concludes that one variable significantly influences another if there
is a chain of influences connccting them and every influence in the chain is significant on the
time scale of intcrest. The evaluation suggests that TRIPEL should also consider cxtra time
lags due to the length of the chain or the spatial distance it covers. Duc to this limitation,
TRIPEL sometimes chooses a time scale of interest that is too fast, and it sometimes includes
irrelevant elemeats in models. TRIPEL is designed to easily incorporatc additional criteria
for determining the significance of influences and chains of influences, so the main challenge

for future research is simply to formulate the criteria.

11
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7 Related Work

The modeling programs of Falkenhainer and Forbus [3], Nayak [14]. and lwasaki and Levy
[7] are most similar to TRIPEL. The program of Falkenhainer and Forbus is notable for ils
contrasting method of selecting the scope, and Nayak’s program is notable for its contrast-
ing method of constructing a model (it builds an overly complex model and then repeatedly
simplifies it). The modeling algorithm developed by Iwasaki and Levy is most similar to
TRIPEL’s algorithm, although their algorithm cannot automatically choose exogenous vari-
ables. For a detailed comparison between TRIPEL and these programs, see [20] and [19].

& Conclusions

The primary results of our research are three-fold. First, we developed general methods for
building intelligent tutoring systems that teach prediction. Sccond, we built a substantial
tutoring system for the task of prediction and experimentally evaluated it. Third, we built
an extensive knowledge base for college-level biology and developed prototype soltware for
answering questions with coherent explanations. From this experience, we have learned how
to structure large knowledge bases using viewpoints, and we have created a foundation on
which to build tutoring system for a wide variety of prediction tasks.
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